Dual-atom site catalysts (DASCs) provide more advantages than single-atom systems in improving energy conversions, owing to their unique features. For example, the coupling effect may align the spin of two adjacent dual-atom active centers in parallel or antiparallel via electron exchange interactions, thereby altering reaction mechanisms and overall efficiency. While numerous reviews have explored spin-dependent electrocatalysis, there remains a lack of a comprehensive, spin-focused framework for understanding the catalytic behavior of DASCs. This review emphasizes the role of spin in dual-atom site centers for electrocatalysis research. First, spin fundamentals in electrocatalysts, including spin-selective orbital occupation, spin ordering, and spin coupling, are comprehensively summarized to provide a solid foundation for subsequent discussions. Then, spin engineering strategies of DASCs are reviewed, including manipulating the spin configuration of the central atoms, modulating coordination environments, and tuning metal-support interactions. Next, recent developments in spin engineering of DASCs are reviewed, with a focus on structure-performance relationships. Furthermore, high-throughput screening techniques integrated with machine learning are discussed for developing highly efficient DASCs based on spin engineering. The challenges and opportunities of DASCs and spin engineering are thoroughly discussed to promote the advancement of new energy applications.
Spin Engineering of Dual-Atom Site Catalysts for Efficient Electrochemical Energy Conversion.
阅读:4
作者:Xue Dongping, Zhao Yu, Cao Jianliang, Wang Yan, Li Xiaoning, Ma Tianyi
| 期刊: | Advanced Materials | 影响因子: | 26.800 |
| 时间: | 2025 | 起止号: | 2025 Sep;37(35):e2504213 |
| doi: | 10.1002/adma.202504213 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
