Alteration in Light Spectra Causes Opposite Responses in Volatile Phenylpropanoids and Terpenoids Compared with Phenolic Acids in Sweet Basil (Ocimum basilicum) Leaves

光照光谱的变化导致甜罗勒(Ocimum basilicum)叶片中挥发性苯丙素类化合物和萜类化合物与酚酸类化合物产生相反的反应

阅读:2
作者:Minna Kivimäenpä ,Adedayo Mofikoya ,Ahmed M Abd El-Raheem ,Johanna Riikonen ,Riitta Julkunen-Tiitto ,Jarmo K Holopainen

Abstract

Basil (Ocimum basilicum, cv. Dolly) grew under three different light spectra (A, B, and C) created by light-emitting diode lamps. The proportions of UV-A, blue, and green-yellow wavelengths decreased linearly from A to C, and the proportions of red and far-red wavelengths increased from A to C. Photosynthetic photon flux density was 300 μmol m-2 s-1 in all spectra. The spectrum C plants had highest concentrations of phenolic acids (main compounds: rosmarinic acid and cichoric acid), lowest concentrations and emissions of phenylpropanoid eugenol and terpenoids (main compounds: linalool and 1,8-cineole), highest dry weight, and lowest water content. Conversely, spectra A and B caused higher terpenoid and eugenol concentrations and emissions and lower concentrations of phenolic acids. High density of peltate glandular trichomes explained high terpenoid and eugenol concentrations and emissions. Basil growth and secondary compounds affecting aroma and taste can be modified by altering light spectra; however, increasing terpenoids and phenylpropanoids decreases phenolic acids and growth and vice versa. Keywords: basil (Ocimum basilicum L.); glandular trichome; leaf anatomy; light spectra; light-emitting diodes; phenolic acids; phenolics; photosynthesis; pigment; secondary chemistry; terpenoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。