The mammalian vomeronasal organ (VNO) mediates the regulation of social behaviors by complex chemical signals. These cues trigger transient elevations of intracellular Ca(2+) in vomeronasal sensory neurons (VSNs), but the functional role of such Ca(2+) elevations is unknown. We show that stimulus-induced Ca(2+) entry plays an essential role as a negative feedback regulator of VSN sensitivity. Electrophysiological VSN responses undergo effective sensory adaptation that requires the influx of Ca(2+) and is mediated by calmodulin (CaM). Removal of the Ca(2+)-CaM feedback eliminates this form of adaptation. A key target of this feedback module is the pheromone-sensitive TRPC2-dependent cation channel of VSNs, as its activation is strongly inhibited by Ca(2+)-CaM. Our results reveal a previously unrecognized CaM-signaling pathway that endows the VSNs with a mechanism for adjusting gain and sensitivity of chemosensory signaling in the VNO.
Ca2+ -calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ.
阅读:4
作者:Spehr Jennifer, Hagendorf Silke, Weiss Jan, Spehr Marc, Leinders-Zufall Trese, Zufall Frank
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2009 | 起止号: | 2009 Feb 18; 29(7):2125-35 |
| doi: | 10.1523/JNEUROSCI.5416-08.2009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
