Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability.

阅读:4
作者:Zheng Hui, Zeng Yan, Chu Ji, Kam Angel YuetFang, Loh Horace H, Law Ping-Yee
The cellular level of neurogenic differentiation 1 (NeuroD) is modulated differentially by mu-opioid receptor agonists; fentanyl increases NeuroD level by reducing the amount of microRNA-190 (miR-190), an inhibitor of NeuroD expression, whereas morphine does not alter NeuroD level. In the current study, NeuroD activity was demonstrated to be also under agonist-dependent regulation. After 3 d of treatment, morphine and fentanyl decreased the activity of the Ca(2+)/calmodulin-dependent protein kinase II alpha (CaMKIIalpha), which phosphorylates and activates NeuroD. Because NeuroD activity is determined by both the CaMKIIalpha activity and the cellular NeuroD level, the overall NeuroD activity was reduced by morphine, but maintained during fentanyl treatment. The differential effects of agonists on NeuroD activity were further confirmed by measuring the mRNA levels of four NeuroD downstream targets: doublecortin, Notch1, neurogenic differentiation 4, and Roundabout 1. Decreased dendritic spine stability and mu-opioid receptor signaling capability were also observed when NeuroD activity was attenuated by miR-190 overexpression or treatment with KN93, a CaMKIIalpha inhibitor. The decrease could be rescued by NeuroD overexpression, which restored NeuroD activity to the basal level. Furthermore, elevating NeuroD activity attenuated the morphine-induced decrease in dendritic spine stability. Therefore, by regulating NeuroD activity, mu-opioid receptor agonists modulate the stability of dendritic spines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。