The seamless integration of shared bikes and metro systems promotes green and eco-friendly travel, yet the supply-demand imbalance of shared bikes around metro stations remains a critical challenge, making accurate demand prediction particularly crucial. Targeting metro-adjacent areas, this study proposes a method to identify shared bike trips connecting to metro usage, effectively filtering out approximately 24% of non-connecting travel records within the buffer zones. A predictive model integrating a Spatiotemporal Attention Graph Convolutional Network (STAGCN), Long Short-Term Memory (LSTM) network, and Informer is developed to forecast shared bike demand for metro connectivity. Specifically, the Informer model incorporates STAGCN to capture spatial correlations in bike demand and introduces an LSTM module to learn long- and short-term temporal dependencies. The final demand prediction is generated through a multilayer perceptron. Experiments conducted on shared bike and metro datasets in Shenzhen demonstrate that the proposed model achieves a coefficient of determination (R2) of 0.893, outperforming baseline models by 6.7% in prediction accuracy. Additionally, it exhibits lower Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) compared to traditional time-series forecasting methods. The proposed demand prediction model can assist operators in optimizing the allocation of shared bike resources, which is of great significance for improving user experience.
Demand prediction for shared bicycles around metro stations incorporating STAGCN.
阅读:4
作者:Xing Xue, Wan Le, Luo Fahui
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 15; 20(7):e0328452 |
| doi: | 10.1371/journal.pone.0328452 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
