Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry: A Strategy for Optimization, Characterization, and Quantification of Antioxidant Nitro Derivatives

液相色谱四极杆飞行时间质谱法:抗氧化硝基衍生物的优化、表征和定量分析策略

阅读:4
作者:Kitmin Chen, Alexander S Edgar, Camille H Wong, Dali Yang

Abstract

As an antioxidant, N-phenyl-β-naphthylamine (PBNA) inhibits the activity of oxidants, such as NO x , to prevent the degradation of energetic materials. In the presence of NO x , nitrated products can be generated in the process potentially. To characterize nitrated PBNA in a nontargeted analysis of complex samples as such, liquid chromatography tandem quadrupole time-of-flight (LC-QTOF), as an excellent analytic technique, is used due to its high resolution and sensitivity. However, a systematic approach of instrumentation optimization, data interpretation, and quantitative determination of products is needed. Through a step-by-step evaluation of the instrumental parameters used in the Q0, Q1, and Q2 compartments of LC-QTOF, optimal ion yields of precursor ions and high-resolution MS2 fragmentation spectra at low mass defects were obtained in both negative and positive electrospray ionization modes. Through rationalization of the fragmentation pathways and verification using theoretical masses, the mononitro derivative of PBNA was accurately identified as N-(4-nitrophenyl)-naphthalen-2-amine and further confirmed using a reference standard. Using strict criteria provided by the analytical guidelines (e.g., SANTE), limit of quantitation, limit of detection, and calibration were established for the quantitation of PBNA and nitrated PBNA. From optimization to characterization and subsequent quantification of the mononitro-PBNA derivative, for the first time, the applicability of this strategy is demonstrated in the aged energetic binders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。