Design and Synthesis of l-1'-Homologated Adenosine Derivatives as Potential Anti-inflammatory Agents

作为潜在抗炎剂的 l-1'-同源腺苷衍生物的设计和合成

阅读:5
作者:Mai Nguyen, Muhammad Arif Aslam, Yen Nguyen, Hafiz Muhammad Ahmad Javaid, Linh Pham, Joo Young Huh, Gyudong Kim

Abstract

Inflammatory responses are fundamental protective warning mechanisms. However, in certain instances, they contribute significantly to the development of several chronic diseases such as cancer. Based on previous studies of truncated 1'-homologated adenosine derivatives, l-nucleosides and their nucleobase-modified quinolone analogues were designed, synthesized, and evaluated for anti-inflammatory activities. The target molecules were synthesized via the key intramolecular cyclization of monotosylate and Mitsunobu condensation from the natural product, d-ribose. All compounds tested and showed potent anti-inflammatory activities, as indicated by their inhibition of LPS-induced IL-1β secretion from the RAW 264.7 macrophages. Gene expressions of pro-inflammatory cytokines showed that all compounds, except 3a and 3b, significantly reduced LPS-induced IL-1β and IL-6 mRNA expressions. The half-maximal inhibitory concentrations (IC50) of 2g and 2h against IL-1β were 1.08 and 2.28 μM, respectively. In contrast, only 2d, 2g, and 3d effectively reversed LPS-induced TNFα mRNA expression. Our mechanistic study revealed that LPS-induced phosphorylation of NF-κB was significantly downregulated by all compounds tested, providing evidence that the NF-κB signaling pathway is involved in their anti-inflammatory activities. Among the compounds tested, 2g and 2h had the most potent anti-inflammatory effects, as shown by the extent of decrease in pro-inflammatory gene expression, protein secretion, and NF-κB phosphorylation. These findings suggest that the l-truncated 1'-homologated adenosine skeleton and its nucleobase-modified analogues have therapeutic potential as treatments for various human diseases by mediating inflammatory processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。