Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato

番茄中含有JmjC结构域的基因JMJ524的敲除,通过转录调控缺乏DELLA结构域基因的GRAS蛋白,导致赤霉素反应发生改变。

阅读:2
作者:Jinhua Li ,Chuying Yu ,Hua Wu ,Zhidan Luo ,Bo Ouyang ,Long Cui ,Junhong Zhang ,Zhibiao Ye

Abstract

Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 ('GRAS protein Lacking the DELLA domain') and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1. Keywords: DELLA; GRAS; JmjC; dwarfism; gibberellin; tomato..

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。