Notch activation in the mouse mammary luminal lineage leads to ductal hyperplasia and altered partitioning of luminal cell subtypes

小鼠乳腺腔内 Notch 激活导致导管增生和腔内细胞亚型划分改变

阅读:4
作者:Yee Peng Phoon, Indira V Chivukula, Yat Long Tsoi, Shigeaki Kanatani, Per Uhlén, Raoul Kuiper, Urban Lendahl

Abstract

Hyperactivated Notch signalling has been implicated in breast cancer, but how elevated levels of Notch signalling contribute to mammary dysplasia and tumorigenesis is not fully understood. In this study, we express an activated form of Notch1 in the mouse mammary luminal lineage and analyse the consequences for tumour formation and the transcriptomic landscape in the luminal lineage. Simultaneous conditional activation of a Notch1 intracellular domain (Notch1 ICD) and EGFP in the luminal lineage was achieved by removal of a stop cassette by CRE-recombinase expression from the whey acidic protein (WAP) promoter. Mice in which Notch1 ICD was activated in the luminal lineage (WAP-CRE;R26-N1ICD mice) exhibit ductal hyperplasia after lactation with an increase in branching frequency and in the number of side-branch ends in the ductal tree. A subset of the mice developed mammary tumours and the majority of the tumour cells expressed EGFP (as a proxy for Notch1 ICD), indicating that the tumours originate from the Notch1 ICD-expressing cells. Single-cell transcriptome analysis of the EGFP-positive mammary cells identified six subtypes of luminal cells. The same six subtypes were found in control mice (WAP-CRE;R26-tdTomato mice expressing the tdTomato reporter from WAP-CRE-mediated activation), but the proportion of cells in the various subtypes differed between the WAP-CRE;R26-N1ICD and control WAP-CRE;R26-tdTomato mice. In conclusion, we show that Notch1 ICD expression in the luminal lineage produces a ductal hyperplasia and branching phenotype accompanied by altered luminal cell subtype partitioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。