The Specific ROCK2 Inhibitor KD025 Alleviates Glycolysis through Modulating STAT3-, CSTA- and S1PR3-Linked Signaling in Human Trabecular Meshwork Cells

特异性 ROCK2 抑制剂 KD025 通过调节人小梁网细胞中的 STAT3、CSTA 和 S1PR3 相关信号通路来缓解糖酵解

阅读:2
作者:Megumi Watanabe ,Tatsuya Sato ,Araya Umetsu ,Toshifumi Ogawa ,Nami Nishikiori ,Megumi Suzuki ,Masato Furuhashi ,Hiroshi Ohguro

Abstract

To investigate the biological significance of Rho-associated coiled-coil-containing protein kinase (ROCK) 2 in the human trabecular meshwork (HTM), changes in both metabolic phenotype and gene expression patterns against a specific ROCK2 inhibitor KD025 were assessed in planar-cultured HTM cells. A seahorse real-time ATP rate assay revealed that administration of KD025 significantly suppressed glycolytic ATP production rate and increased mitochondrial ATP production rate in HTM cells. RNA sequencing analysis revealed that 380 down-regulated and 602 up-regulated differentially expressed genes (DEGs) were identified in HTM cells treated with KD025 compared with those that were untreated. Gene ontology analysis revealed that DEGs were more frequently related to the plasma membrane, extracellular components and integral cellular components among cellular components, and related to signaling receptor binding and activity and protein heterodimerization activity among molecular functions. Ingenuity Pathway Analysis (IPA) revealed that the detected DEGs were associated with basic cellular biological and physiological properties, including cellular movement, development, growth, proliferation, signaling and interaction, all of which are associated with cellular metabolism. Furthermore, the upstream regulator analysis and causal network analysis estimated IL-6, STAT3, CSTA and S1PR3 as possible regulators. Current findings herein indicate that ROCK2 mediates the IL-6/STAT3-, CSTA- and S1PR3-linked signaling related to basic biological activities such as glycolysis in HTM cells. Keywords: KD025; RNA sequencing; Rho-associated coiled-coil containing protein kinase (ROCK); XF real-time ATP rate assay; human trabecular meshwork (HTM).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。