Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain

锥体细胞中向外矫正紧张活性 GABAA 受体可调节神经元偏移,而不是增益

阅读:5
作者:Ivan Pavlov, Leonid P Savtchenko, Dimitri M Kullmann, Alexey Semyanov, Matthew C Walker

Abstract

Hippocampal pyramidal cell excitability is regulated both by fast synaptic inhibition and by tonically active high-affinity extrasynaptic GABA(A) receptors. The impact of tonic inhibition on neuronal gain and offset, and thus on information processing, is unclear. Offset is altered by shunting inhibition, and the gain of a neuronal response to an excitatory input can be modified by changing the level of "background" synaptic noise. Therefore, tonic activation of GABA(A) receptors would be expected to modulate offset and, in addition, to alter gain through a shunting effect on synaptic noise. Here we show that tonically active GABA(A) receptors in CA1 pyramidal cells show marked outward rectification, while the peaks of IPSCs exhibit a linear current-voltage relationship. As a result, tonic GABA(A) receptor-mediated currents have a minimal effect upon subthreshold membrane potential variation due to synaptic noise, but predominantly affect neurons at spiking threshold. Consistent with this, tonic GABA(A) receptor-mediated currents in pyramidal cells exclusively affect offset and not gain. Modulation of tonically active GABA(A) receptors by fluctuations in extracellular GABA concentrations or neuromodulators acting on high-affinity receptors potentially provides a powerful mechanism to alter neuronal offset independently of neuronal gain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。