Lithium alleviates neurotoxic prion peptide-induced synaptic damage and neuronal death partially by the upregulation of nuclear target REST and the restoration of Wnt signaling

锂可减轻神经毒性朊病毒肽引起的突触损伤和神经元死亡,部分原因是上调核靶 REST 和恢复 Wnt 信号

阅读:8
作者:Zhiqi Song, Wei Yang, Xiangmei Zhou, Lifeng Yang, Deming Zhao

Abstract

Prion diseases are a group of infectious neurodegenerative diseases characterized by multiple neuropathological hallmarks, including accumulation of PrPSc, synaptic damage, and neuronal death. We previously reported that the repressor element 1-silencing transcription factor (REST), a novel neuroprotective marker in neurodegeneration, protects neurons against neurotoxic peptide (PrP106-126)-induced neurotoxicity, but fails to maintain survival following prolonged exposure to PrP106-126. Because Wnt signaling partially induces REST and is activated by lithium, we investigated the effects of lithium on REST in prion diseases. Lithium restores nuclear expression of REST, which is essential for regulating survival proteins. Lithium also mimics neuroprotective functions when REST is blocked, and these beneficial effects are additive with REST overexpression under physiological conditions. Reciprocally, under PrP106-126-stimulated pathological conditions, REST plays a critical role in the neuroprotective mechanisms of lithium treatment. Although lithium recovers Wnt signaling by inhibiting glycogen synthase kinase-3β and stabilizing β-catenin, restores survival associated proteins after exposure to PrP106-126 in primary cortical neurons. Knockdown of REST significantly suppresses the neuroprotective function of lithium. Conversely, overexpression of REST partially recovers its actions. Notably, lithium directly alleviates PrP106-126-induced synaptic damage and neuronal cell death by preventing changes in presynaptic and postsynaptic marker proteins and promoting survival pathways also partially via the expression of REST. Our results suggest that REST acts as a novel and important nuclear target for lithium. We hypothesize that PrP106-126-stimulated neurotoxicity induces Wnt signaling dysfunction and lithium mimics this signaling cascade, suggesting that lithium should be considered as a potential therapeutic agent against prion diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。