Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae

水稻稻瘟病菌分生孢子形成过程中的基因表达谱分析

阅读:2
作者:Kyoung Su Kim ,Yong-Hwan Lee

Abstract

Conidiation of phytopathogenic fungi is a key developmental process that plays a central role in their life cycles and in epidemics. However, there is little information on conidiation-induced molecular changes in the rice blast fungus Magnaporthe oryzae. As a first step to understand conidiogenesis in this fungus, we measured genome-wide gene expression profiles during conidiation using a whole genome oligonucleotide microarray. At a two-fold expression difference, approximately 4.42% and 4.08% of genes were upregulated and downregulated, respectively, during conidiation. The differentially expressed genes were functionally categorized by gene ontology (GO) term analysis, which demonstrated that the gene set encoded proteins that function in metabolism, cell wall biosynthesis, transcription, and molecule transport. To define the events of the complicated process of conidiogenesis, another set of microarray experiments was performed using a deletion mutant for MoHOX2, a stage-specific transcriptional regulator essential for conidial formation, which was expressed de novo in a conidiation-specific manner in M. oryzae. Gene expression profiles were compared between the wild-type and the ΔMohox2 mutant during conidiation. This analysis defined a common gene set that was upregulated in the wild-type and downregulated in the ΔMohox2 mutant during conidiation; this gene set is expected to include conidiation-related downstream genes of MoHOX2. We identified several hundred genes that are differentially-expressed during conidiation; our results serve as an important resource for understanding the conidiation, a process in M. oryzae, which is critical for disease development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。