Genetic variants and increased expression of Parascaris equorum P-glycoprotein-11 in populations with decreased ivermectin susceptibility

在对伊维菌素敏感性降低的人群中,马蛔虫P-糖蛋白-11的遗传变异和表达增加

阅读:3
作者:I Jana I Janssen ,Jürgen Krücken, Janina Demeler, Marta Basiaga, Sławomir Kornaś, Georg von Samson-Himmelstjerna

Abstract

Macrocyclic lactones (MLs) represent the major drug class for control of parasitic infections in humans and animals. However, recently reports of treatment failures became more frequent. In addition to human and ruminant parasitic nematodes this also is the case for the horse-nematode Parascaris equorum. Nevertheless, to date the molecular basis of ML resistance is still not understood. Unspecific resistance mechanisms involving transporters such as P-glycoproteins (Pgps) are expected to contribute to ML resistance in nematodes. Here, complete sequences of two P. equorum Pgps were cloned and identified as orthologs of Caenorhabditis elegans Ppg-11 and an unnamed Caenorhabditis briggsae Pgp designated as Pgp-16 using phylogenetic analysis. Quantitative real-time PCR was used to compare expression between tissues. Significantly higher PeqPgp-11 expression was found in the gut for both genders, whereas for PeqPgp-16 the body wall was identified as predominant expression site. Furthermore, Pgps were analyzed regarding their participation in resistance development. Using SeqDoC analyses, Pgp-sequences of P. equorum populations with different ML susceptibility were compared. This approach revealed three single nucleotide polymorphisms (SNPs) causing missense mutations in the PeqPgp-11 sequence which correlated with decreased ML susceptibility. However, no resistance associated differences in mRNA expression levels were detected between embryonated eggs of these populations. In contrast, comparison of two pre-adult groups with different ivermectin (IVM) susceptibility revealed the presence of the three SNPs and in addition statistically significant PeqPgp-11 overexpression in the group of worms with reduced susceptibility. These results indicate that Pgp-11 might be involved in IVM resistance in P. equorum as it shows increased expression in an IVM exposed life-cycle stage of an IVM resistant population as well as occurrence of putatively resistance associated SNPs in populations with reduced IVM susceptibility. These SNPs are promising diagnostic candidates for detection of ML resistance with potential also for other parasitic nematode species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。