Protein expression profiles in murine ventricles modeling catecholaminergic polymorphic ventricular tachycardia: effects of genotype and sex

小鼠心室内蛋白质表达谱模拟儿茶酚胺能多形性室性心动过速:基因型和性别的影响

阅读:5
作者:Khalil Saadeh, Zakaria Achercouk, Ibrahim T Fazmin, Nakulan Nantha Kumar, Samantha C Salvage, Charlotte E Edling, Christopher L-H Huang, Kamalan Jeevaratnam

Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is associated with mutations in the cardiac ryanodine receptor (RyR2). These result in stress-induced ventricular arrhythmic episodes, with clinical symptoms and prognosis reported more severe in male than female patients. Murine homozygotic RyR2-P2328S (RyR2S/S ) hearts replicate the proarrhythmic CPVT phenotype of abnormal sarcoplasmic reticular Ca2+ leak and disrupted Ca2+ homeostasis. In addition, RyR2S/S hearts show decreased myocardial action potential conduction velocities (CV), all features implicated in arrhythmic trigger and substrate. The present studies explored for independent and interacting effects of RyR2S/S genotype and sex on expression levels of molecular determinants of Ca2+ homeostasis (CASQ2, FKBP12, SERCA2a, NCX1, and CaV 1.2) and CV (NaV 1.5, Connexin (Cx)-43, phosphorylated-Cx43, and TGF-β1) in mice. Expression levels of Ca2+ homeostasis proteins were not altered, hence implicating abnormal RyR2 function alone in disrupted cytosolic Ca2+ homeostasis. Furthermore, altered NaV 1.5, phosphorylated Cx43, and TGF-β1 expression were not implicated in the development of slowed CV. By contrast, decreased Cx43 expression correlated with slowed CV, in female, but not male, RyR2S/S mice. The CV changes may reflect acute actions of the increased cytosolic Ca2+ on NaV 1.5 and Cx43 function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。