Trimethoprim-Loaded PLGA Nanoparticles Grafted with WGA as Potential Intravesical Therapy of Urinary Tract Infections-Studies on Adhesion to SV-HUCs Under Varying Time, pH, and Drug-Loading Conditions

载甲氧苄啶的 PLGA 纳米粒子与 WGA 接枝,可作为尿路感染膀胱内治疗的潜在方案 - 在不同时间、pH 值和载药条件下对 SV-HUC 的粘附性研究

阅读:5
作者:Bernhard Brauner, Johanna Semmler, Desireé Rauch, Melinda Nokaj, Patricia Haiss, Patrik Schwarz, Michael Wirth, Franz Gabor

Abstract

Intravesical therapy, already used to treat bladder cancer, is a potential treatment option for urinary tract infections. However, short dwelling time and washout proved to be challenging obstacles. To circumvent these issues, PLGA 503H and PLGA 2300 nanoparticles were prepared and surface modified with wheat germ agglutinin (WGA). Nanoparticles of both poly(d,l-lactic-co-glycolic acid) (PLGA) types exhibited high inherent adhesion to human uroepithelial cells. Although surface-bound WGA could be easily increased, adhesion did not. Loading the nanoparticles with trimethoprim did not counteract cell adhesion. Varying the medium for instillation revealed highest adhesion in sodium bicarbonate buffer (pH 5). To evaluate dwelling time, nanoparticles were incubated with the cell monolayer for increasing time intervals. A contact time of 15 min seems to be too short for adhesion to the cells as less than 50% particles remained bound after washing. However, after 30 min 70% of the particles added were bound, and afterward, no further increase was observed. WGA only slightly increased the adhesion of the PLGA nanoparticles, but this approach might not be economically viable. However, PLGA nanoparticles displayed a high inherent adhesion to cells that might substantially foster intravesical therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。