Elevated Membrane Cholesterol Disrupts Lysosomal Degradation to Induce β-Amyloid Accumulation: The Potential Mechanism Underlying Augmentation of β-Amyloid Pathology by Type 2 Diabetes Mellitus

膜胆固醇升高会破坏溶酶体降解,从而诱导 β-淀粉样蛋白积聚:2 型糖尿病加剧 β-淀粉样蛋白病理的潜在机制

阅读:4
作者:Shingo Takeuchi, Naoya Ueda, Keiko Suzuki, Nobuhiro Shimozawa, Yasuhiro Yasutomi, Nobuyuki Kimura

Abstract

The endocytic membrane trafficking system is altered in the brains of early-stage Alzheimer disease (AD) patients, and endocytic disturbance affects the metabolism of β-amyloid (Aβ) protein, a key molecule in AD pathogenesis. It is widely accepted that type 2 diabetes mellitus (T2DM) is one of the strongest risk factors for development of AD. Supporting this link, experimentally induced T2DM enhances AD pathology in various animal models. Spontaneous T2DM also enhances Aβ pathology with severe endocytic pathology, even in nonhuman primate brains. However, it remains unclear how T2DM accelerates Aβ pathology. Herein, we demonstrate that cholesterol metabolism-related protein levels are increased and that membrane cholesterol level is elevated in spontaneous T2DM-affected cynomolgus monkey brains. Moreover, in vitro studies that manipulate cellular cholesterol reveal that elevated membrane cholesterol disrupts lysosomal degradation and enhances chemical-induced endocytic disturbance, resulting in great accumulation of Aβ in Neuro2a cells. These findings suggest that an alteration of cerebral cholesterol metabolism may be responsible for augmentation of Aβ pathology in T2DM-affected brains, which, in turn, may increase the risk for developing AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。