Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa

通过对 Unionoida Elliptio complanata 和 Villosa lienosa 的壳基质蛋白质组学研究,可以深度保护双壳贝珍珠层蛋白

阅读:4
作者:Benjamin Marie, Jaison Arivalagan, Lucrèce Mathéron, Gérard Bolbach, Sophie Berland, Arul Marie, Frédéric Marin

Abstract

The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called 'calcifying matrix' is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required. Notable advances in expressed tag sequencing of freshwater mussels, such as Elliptio complanata and Villosa lienosa, provide a pre-requisite to further characterize bivalve nacre proteins by a proteomic approach. In this study, we have identified a total of 48 different proteins from the insoluble matrices of the nacre, 31 of which are common to both E. complanata and V. lienosa A few of these proteins, such as PIF, MSI60, CA, shematrin-like, Kunitz-like, LamG, chitin-binding-containing proteins, together with A-, D-, G-, M- and Q-rich proteins, appear to be analogues, if not true homologues, of proteins previously described from the pearl oyster or the edible mussel nacre matrices, thus forming a remarkable list of deeply conserved nacre proteins. This work constitutes a comprehensive nacre proteomic study of non-pteriomorphid bivalves that has enabled us to describe the molecular basis of a deeply conserved biomineralization toolkit among nacreous shell-bearing bivalves, with regard to proteins associated with other shell microstructures, with those of other mollusc classes (gastropods, cephalopods) and, finally, with other lophotrochozoans (brachiopods).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。