A stable polymeric chain configuration producing high performance PEBAX-1657 membranes for CO2 separation

稳定的聚合物链结构可产生用于 CO2 分离的高性能 PEBAX-1657 膜

阅读:9
作者:Pankaj Sharma, Young-Jin Kim, Min-Zy Kim, Syed Fakhar Alam, Churl Hee Cho

Abstract

Although PEBAX-1657 is one of the promising polymeric materials for selective CO2 separation, there remain many questions about the optimal polymeric structure and possibility of improving performance without adulterating its basic structure by impregnating inorganic fillers. In order to improve the gas separation performance, low thickness PEBAX membranes were synthesized under steady solvent evaporation conditions by keeping in mind that one of its segments (nylon 6) shows structural variance and molecular orientation with a change in the evaporation rate. Furthermore, phase pure zeolite nanocrystals with cubic (zeolite A) and octahedral (zeolite Y) shapes have been synthesized through liquid phase routes using microwave hydrothermal reactors. The average sizes of zeolite A and Y crystals are around 55 and 40 nm, respectively. The inspection of XRD, DSC and Raman shift of PEBAX membranes demonstrates the formation of a stable polymeric structure with an improved crystalline state which results in high CO2 permeability membranes. The CO2 permeability as well as diffusivity increase with a decrease in membrane thickness and reach a maximum value of 184.7 Barrer and 2.6 × 10-6 cm2 s-1, respectively. The as-fabricated pristine PEBAX membrane shows much better performance in terms of permeance (CO2 184.7 Barrer), diffusivity (CO2 2.6 × 10-6 cm2 s-1) and selectivity (CO2/N2 59.7), which substantiate its promising prospects for CO2 capture. This exceptional performance of the pristine PEBAX membrane arises from the free volume generated during the steady polymerization. This reported approach for PEBAX membrane synthesis provides a direction in the design of membrane fabrication processes for economic CO2 separation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。