Plasmon-induced ultrafast charge transfer in single-particulate Cu1.94S-ZnS nanoheterostructures

单颗粒 Cu1.94S-ZnS 纳米异质结构中的等离子体诱导超快电荷转移

阅读:5
作者:Xueyi Guo, Sheng Liu, Weijia Wang, Chongyao Li, Ying Yang, Qinghua Tian, Yong Liu

Abstract

Recombination centers generated from structural and interfacial defects in nanoheterostructures (NHs) prevent effective photo-induced charge transfer and have blocked the advance of many photoresponsive applications. Strategies to construct high-quality interfaces in NHs are emerging but are limited in the release of interfacial strain and the integrality of the sublattice. Herein, we synthesize single-particulate Cu1.94S-ZnS NHs with a continuous sublattice using a nanoscale cation exchange reaction (CE). Under near-infrared (NIR) radiation (λ = 1500 nm), femtosecond open-aperture (OA) Z-scan measurements are applied to investigate the nonlinear optical features of samples and verify the existence of plasma-induced charge transfer in the Cu1.94S-ZnS NHs system. The resulting charge transfer time (τ CT) of ∼0.091 picoseconds (ps) was confirmed by the femtosecond time-resolved pump-probe technique. Such an ultrafast charge transfer process has been rarely reported in semiconductor-semiconductor NHs. The results suggest that CE can be used as a promising tool to construct well-ordered interfacial structures, which are significant for the performance enhancement of NHs for photon utilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。