Identification of beta-catenin as a target of the intracellular tyrosine kinase PTK6

鉴定 β-catenin 为细胞内酪氨酸激酶 PTK6 的靶点

阅读:8
作者:Helena L Palka-Hamblin, Jessica J Gierut, Wenjun Bie, Patrick M Brauer, Yu Zheng, John M Asara, Angela L Tyner

Abstract

Disruption of the gene encoding protein tyrosine kinase 6 (PTK6) leads to increased growth, impaired enterocyte differentiation and higher levels of nuclear beta-catenin in the mouse small intestine. Here, we demonstrate that PTK6 associates with nuclear and cytoplasmic beta-catenin and inhibits beta-catenin- and T-cell factor (TCF)-mediated transcription. PTK6 directly phosphorylates beta-catenin on Tyr64, Tyr142, Tyr331 and/or Tyr333, with the predominant site being Tyr64. However, mutation of these sites does not abrogate the ability of PTK6 to inhibit beta-catenin transcriptional activity. Outcomes of PTK6-mediated regulation appear to be dependent on its intracellular localization. In the SW620 colorectal adenocarcinoma cell line, nuclear-targeted PTK6 negatively regulates endogenous beta-catenin/TCF transcriptional activity, whereas membrane-targeted PTK6 enhances beta-catenin/TCF regulated transcription. Levels of TCF4 and the transcriptional co-repressor TLE/Groucho increase in SW620 cells expressing nuclear-targeted PTK6. Knockdown of PTK6 in SW620 cells leads to increased beta-catenin/TCF transcriptional activity and increased expression of beta-catenin/TCF target genes Myc and Survivin. Ptk6-null BAT-GAL mice, containing a beta-catenin-activated LacZ reporter transgene, have increased levels of beta-galactosidase expression in the gastrointestinal tract. The ability of PTK6 to negatively regulate beta-catenin/TCF transcription by modulating levels of TCF4 and TLE/Groucho could contribute to its growth-inhibitory activities in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。