Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation

小鼠遗传背景影响对高氧驱动的肺成熟干扰的敏感性

阅读:4
作者:Jennifer Tiono, David E Surate Solaligue, Ivana Mižíková, Claudio Nardiello, István Vadász, Eva Böttcher-Friebertshäuser, Harald Ehrhardt, Susanne Herold, Werner Seeger, Rory E Morty

Background

The laboratory mouse is widely used in preclinical models of bronchopulmonary dysplasia, where lung alveolarization is stunted by exposure of pups to hyperoxia. Whether the diverse genetic backgrounds of different inbred mouse strains impacts lung development in newborn mice exposed to hyperoxia has not been systematically assessed.

Conclusion

The genetic background of laboratory mouse strains dramatically influenced the response of the developing lung to hyperoxic insult. This might be explained, at least in part, by differences in how antioxidant systems are engaged by different mouse strains after hyperoxia exposure.

Methods

Hyperoxia (85% O2 , 14 days)-induced perturbations to lung alveolarization were assessed by design-based stereology in C57BL/6J, BALB/cJ, FVB/NJ, C3H/HeJ, and DBA/2J inbred mouse strains. The expression of components of the lung antioxidant machinery was assessed by real-time reverse transcriptase polymerase chain reaction and immunoblot.

Results

Hyperoxia-reduced lung alveolar density in all five mouse strains to different degrees (C57BL/6J, 64.8%; FVB/NJ, 47.4%; BALB/cJ, 46.4%; DBA/2J, 45.9%; and C3H/HeJ, 35.9%). Hyperoxia caused a 94.5% increase in mean linear intercept in the C57BL/6J strain, whilst the C3H/HeJ strain was the least affected (31.6% increase). In contrast, hyperoxia caused a 65.4% increase in septal thickness in the FVB/NJ strain, where the C57BL/6J strain was the least affected (30.3% increase). The expression of components of the lung antioxidant machinery in response to hyperoxia was strain dependent, with the C57BL/6J strain exhibiting the most dramatic engagement. Baseline expression levels of components of the lung antioxidant systems were different in the five mouse strains studied, under both normoxic and hyperoxic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。