Synthetic Extracellular Matrices for 3D Culture of Schwann Cells, Hepatocytes, and HUVECs

用于雪旺细胞、肝细胞和 HUVEC 三维培养的合成细胞外基质

阅读:5
作者:Chiyuan Ma, Kaizheng Liu, Qin Li, Yue Xiong, Cuixiang Xu, Wenya Zhang, Changshun Ruan, Xin Li, Xiaohua Lei

Abstract

Synthetic hydrogels from polyisocyanides (PIC) are a type of novel thermoreversible biomaterials, which can covalently bind biomolecules such as adhesion peptides to provide a suitable extracellular matrix (ECM)-like microenvironment for different cells. Although we have demonstrated that PIC is suitable for three-dimensional (3D) culture of several cell types, it is unknown whether this hydrogel sustains the proliferation and passaging of cells originating from different germ layers. In the present study, we propose a 3D culture system for three representative cell sources: Schwann cells (ectoderm), hepatocytes (endoderm), and endothelial cells (mesoderm). Both Schwann cells and hepatocytes proliferated into multicellular spheroids and maintained their properties, regardless of the amount of cell-adhesive RGD motifs in long-term culture. Notably, Schwann cells grew into larger spheroids in RGD-free PIC than in PIC-RGD, while HL-7702 showed the opposite behavior. Endothelial cells (human umbilical vein endothelial cells, HUVECs) spread and formed an endothelial cell (EC) network only in PIC-RGD. Moreover, in a hepatocyte/HUVEC co-culture system, the characteristics of both cells were well kept for a long period in PIC-RGD. In all, our work highlights a simple ECM mimic that supports the growth and phenotype maintenance of cells from all germ layers in the long term. Our findings might contribute to research on biological development, organoid engineering, and in vitro drug screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。