BACKGROUND: Stromal CD8+ tumor-infiltrating lymphocytes (TILs) are an important prognostic and predictive indicator in non-small cell lung cancer (NSCLC). In this study, we aimed to develop and test the feasibility of a digital image analysis (DIA) workflow for estimating stromal CD8+ TIL density. METHODS: A DIA workflow developed in a software platform (QuPath) was applied to a specified region of interest (ROI) within the stromal compartment of dual PD-L1/CD8 immunostained slides from 50 lung adenocarcinoma patients. A random tree classifier was trained from 25 training cases and applied to 25 test cases. The DIA-estimated CD8+ TIL densities were compared to manual estimates of three pathologists, who independently quantitated the percentage of CD8+ TILs from predefined ROIs in QuPath. RESULTS: The average estimated total stromal cell count per case was 520 (range: 282-816) by QuPath and 551 (range: 265-744) by pathologists. The DIA-estimated CD8+ TIL density (mean = 16.9%) was comparable to pathologists' manual estimates (mean = 15.9%). A paired t-test showed no statistically significant difference between DIA and pathologist estimates of CD8+ TIL density among both training (n = 25, P = 0.55) and test (n = 25, P = 0.34) cases. There was an almost perfect agreement between QuPath and each pathologist's estimates of CD8+ TIL density (κ = 0.85-0.86). CONCLUSIONS: These findings demonstrate the feasibility of applying a DIA workflow for estimating stromal CD8+ TIL density in NSCLC. DIA has the potential to provide an efficient and standardized approach for estimating stromal CD8+ TIL density.
Digital Image Analysis for Estimating Stromal CD8+ Tumor-Infiltrating Lymphocytes in Lung Adenocarcinoma.
阅读:16
作者:Jhun Iny, Shepherd Daniel, Hung Yin P, Madrigal Emilio, Le Long P, Mino-Kenudson Mari
| 期刊: | Journal of Pathology Informatics | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Jul 5; 12:28 |
| doi: | 10.4103/jpi.jpi_36_20 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
