Next-generation sequencing (NGS) is an important tool for taxonomical bacteria identification. Recent technological developments have led to its improvement and availability. Despite the undeniable advantages of this approach, it has several limitations and shortcomings. The usual outcome of microbiota sequencing is a relative abundance of bacterial taxa. The information about bacteria viability or enumeration is missing. However, this knowledge is crucial for many applications. In the current study, we elaborated the complete workflow for the absolute quantification of living bacteria based on 16S rRNA gene amplicon sequencing. A fluorescent PMAxx reagent penetrating a damaged cell membrane was used to discriminate between the total and viable bacterial population. Bacteria enumeration was estimated by the spike-in technique or qPCR quantification. For method optimization, twenty bacterial species were taken, and the results of the workflow were validated by widely accepted methodologies: flow cytometry, microbiological plating, and viability-qPCR. Despite the minor discrepancy between all methods used, they all showed compatible results. Finally, we tested the workflow with actual food samples and received a good correlation between the methods regarding the estimation of the number of viable bacteria. Overall, the elaborated and integrated NGS approach could be the next step in perceiving a holistic picture of a sample microbiota.
Absolute quantification of viable bacteria abundances in food by next-generation sequencing: Quantitative NGS of viable microbes.
阅读:4
作者:Kallastu Aili, Malv Esther, Aro Valter, Meikas Anne, Vendelin Mariann, Kattel Anna, Nahku Ranno, Kazantseva Jekaterina
| 期刊: | Current Research in Food Science | 影响因子: | 7.000 |
| 时间: | 2023 | 起止号: | 2023 Jan 12; 6:100443 |
| doi: | 10.1016/j.crfs.2023.100443 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
