MOTIVATION: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-cell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge. RESULTS: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples. AVAILABILITYAND IMPLEMENTATION: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Agile workflow for interactive analysis of mass cytometry data.
阅读:5
作者:Casado Julia, Lehtonen Oskari, Rantanen Ville, Kaipio Katja, Pasquini Luca, Häkkinen Antti, Petrucci Elenora, Hynninen Johanna, Hietanen Sakari, Carpén Olli, Biffoni Mauro, Färkkilä Anniina, Hautaniemi Sampsa
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2021 | 起止号: | 2021 Jun 9; 37(9):1263-1268 |
| doi: | 10.1093/bioinformatics/btaa946 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
