MOTIVATION: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-cell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge. RESULTS: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples. AVAILABILITYAND IMPLEMENTATION: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Agile workflow for interactive analysis of mass cytometry data.
阅读:7
作者:Casado Julia, Lehtonen Oskari, Rantanen Ville, Kaipio Katja, Pasquini Luca, Häkkinen Antti, Petrucci Elenora, Hynninen Johanna, Hietanen Sakari, Carpén Olli, Biffoni Mauro, Färkkilä Anniina, Hautaniemi Sampsa
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2021 | 起止号: | 2021 Jun 9; 37(9):1263-1268 |
| doi: | 10.1093/bioinformatics/btaa946 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
