Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in Escherichia coli for > 2,000 proteins over > 60 growth conditions, including nutrient limitations, non-metabolic stresses, and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.
From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions.
阅读:4
作者:Mori Matteo, Zhang Zhongge, Banaei-Esfahani Amir, Lalanne Jean-Benoît, Okano Hiroyuki, Collins Ben C, Schmidt Alexander, Schubert Olga T, Lee Deok-Sun, Li Gene-Wei, Aebersold Ruedi, Hwa Terence, Ludwig Christina
| 期刊: | Molecular Systems Biology | 影响因子: | 7.700 |
| 时间: | 2021 | 起止号: | 2021 May;17(5):e9536 |
| doi: | 10.15252/msb.20209536 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
