Pumping the brakes on RNA velocity by understanding and interpreting RNA velocity estimates.

阅读:4
作者:Zheng Shijie C, Stein-O'Brien Genevieve, Boukas Leandros, Goff Loyal A, Hansen Kasper D
BACKGROUND: RNA velocity analysis of single cells offers the potential to predict temporal dynamics from gene expression. In many systems, RNA velocity has been observed to produce a vector field that qualitatively reflects known features of the system. However, the limitations of RNA velocity estimates are still not well understood. RESULTS: We analyze the impact of different steps in the RNA velocity workflow on direction and speed. We consider both high-dimensional velocity estimates and low-dimensional velocity vector fields mapped onto an embedding. We conclude the transition probability method for mapping velocity estimates onto an embedding is effectively interpolating in the embedding space. Our findings reveal a significant dependence of the RNA velocity workflow on smoothing via the k-nearest-neighbors (k-NN) graph of the observed data. This reliance results in considerable estimation errors for both direction and speed in both high- and low-dimensional settings when the k-NN graph fails to accurately represent the true data structure; this is an unknown feature of real data. RNA velocity performs poorly at estimating speed in both low- and high-dimensional spaces, except in very low noise settings. We introduce a novel quality measure that can identify when RNA velocity should not be used. CONCLUSIONS: Our findings emphasize the importance of choices in the RNA velocity workflow and highlight critical limitations of data analysis. We advise against over-interpreting expression dynamics using RNA velocity, particularly in terms of speed. Finally, we emphasize that the use of RNA velocity in assessing the correctness of a low-dimensional embedding is circular.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。