A statistical simulation model to guide the choices of analytical methods in arrayed CRISPR screen experiments.

阅读:3
作者:Kim Chang Sik, Cairns Jonathan, Quarantotti Valentina, Kaczkowski Bogumil, Wang Yinhai, Konings Peter, Zhang Xiang
An arrayed CRISPR screen is a high-throughput functional genomic screening method, which typically uses 384 well plates and has different gene knockouts in different wells. Despite various computational workflows, there is currently no systematic way to find what is a good workflow for arrayed CRISPR screening data analysis. To guide this choice, we developed a statistical simulation model that mimics the data generating process of arrayed CRISPR screening experiments. Our model is flexible and can simulate effects on phenotypic readouts of various experimental factors, such as the effect size of gene editing, as well as biological and technical variations. With two examples, we showed that the simulation model can assist making principled choice of normalization and hit calling method for the arrayed CRISPR data analysis. This simulation model is implemented in an R package and can be downloaded from Github.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。