Radiometric Terrain Corrected (RTC) gamma nought backscatter, which was introduced around a decade ago, has evolved into the standard for analysis-ready Synthetic Aperture Radar (SAR) data. While working with RTC backscatter data is particularly advantageous over undulated terrain, it requires substantial computing resources given that the terrain flattening is more computationally demanding than simple orthorectification. The extra computation may become problematic when working with large SAR datasets such as the one provided by the Sentinel-1 mission. In this study, we examine existing Sentinel-1 RTC pre-processing workflows and assess ways to reduce processing and storage overheads by considering the satellite's high orbital stability. By propagating Sentinel-1's orbital deviations through the complete pre-processing chain, we show that the local contributing area and the shadow mask can be assumed to be static for each relative orbit. Providing them as a combined external static layer to the pre-processing workflow, and streamlining the transformations between ground and orbit geometry, reduces the overall processing times by half. We conducted our experiments with our in-house developed toolbox named wizsard, which allowed us to analyse various aspects of RTC, specifically run time performance, oversampling, and radiometric quality. Compared to the Sentinel Application Platform (SNAP) this implementation allowed speeding up processing by factors of 10-50. The findings of this study are not just relevant for Sentinel-1 but for all SAR missions with high spatio-temporal coverage and orbital stability.
Utilising Sentinel-1's Orbital Stability for Efficient Pre-Processing of Radiometric Terrain Corrected Gamma Nought Backscatter.
阅读:10
作者:Navacchi Claudio, Cao Senmao, Bauer-Marschallinger Bernhard, Snoeij Paul, Small David, Wagner Wolfgang
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Jul 1; 23(13):6072 |
| doi: | 10.3390/s23136072 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
