Chinese hamster ovary (CHO) cells are the primary host for biopharmaceutical production. To meet increasing demands for productivity, quality, and complex molecule expression, genetic engineering, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-mediated gene knockout (KO), is widely used to optimize host cell performance. However, systematic screening of KO targets remains challenging due to the labor-intensive process of generating and evaluating individual clones. In this study, we present a robust, high-throughput CRISPR workflow using stable KO pools in CHO cells. These pools maintain genetic stability for over 6 weeks, including in multiplexed configurations targeting up to seven genes simultaneously. Compared to clonal approaches, KO pools reduce variability caused by clonal heterogeneity and better reflect the host cell population phenotype. We demonstrate the utility of this approach by reproducing the beneficial phenotypic effects of fibronectin 1 (FN1) KO, specifically prolonged culture duration and improved late-stage viability in fed-batch processes. This workflow enables efficient identification and evaluation of promising KO targets without the need to generate and test large numbers of clones. Overall, screening throughput is increased 2.5-fold and timelines are compressed from 9 to 5 weeks. This provides a scalable, efficient alternative to traditional clonal screening, accelerating discovery for CHO cell line engineering for biopharmaceutical development.
Utilizing Stable Gene-Edited Knockout Pools for Genetic Screening and Engineering in Chinese Hamster Ovary Cells.
阅读:5
作者:Marzluf Jannis Peter, Daniela Kirchmeier, Klein Jennifer, Zehe Christoph, Leroux Ann-Cathrin
| 期刊: | Biotechnology Journal | 影响因子: | 3.100 |
| 时间: | 2025 | 起止号: | 2025 May;20(5):e70033 |
| doi: | 10.1002/biot.70033 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
