Slide-free imaging techniques have shown great promise in improving the histological workflow. For example, computational high-throughput autofluorescence microscopy by pattern illumination (CHAMP) has achieved high resolution with a long depth of field, which, however, requires a costly ultraviolet laser. Here, simply using a low-cost light-emitting diode (LED), we propose a deep learning-assisted framework of enhanced widefield microscopy, termed EW-LED, to generate results similar to CHAMP (the learning target). Comparing EW-LED and CHAMP, EW-LED reduces the cost by 85Ã, shortening the image acquisition time and computation time by 36Ã and 17Ã, respectively. This framework can be applied to other imaging modalities, enhancing widefield images for better virtual histology.
Deep learning-assisted low-cost autofluorescence microscopy for rapid slide-free imaging with virtual histological staining.
阅读:3
作者:Wong Ivy H M, Chen Zhenghui, Shi Lulin, Lo Claudia T K, Kang Lei, Dai Weixing, Wong Terence T W
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Mar 6; 15(4):2187-2201 |
| doi: | 10.1364/BOE.515018 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
