There has been growing interest in using peptides for the controlled synthesis of nanomaterials. Peptides play a crucial role not only in regulating the nanostructure formation process but also in influencing the resulting properties of the nanomaterials. Leveraging machine learning (ML) in the biomimetic workflow is anticipated to accelerate peptide discovery, make the process more resource-efficient, and unravel associations among attributes that may be useful in peptide design. In this study, a binary ML classifier is formulated that was trained and tested on 1720 peptide examples. The support vector machine classifier uses Kidera factors to categorize peptides into one of two groups based on their binding ability. The classifier exhibits satisfactory performance, as demonstrated by various performance metrics. In addition, key variables that bear a huge impact on the model were identified, such as peptide hydrophobicity. As these trends were derived from a large and diverse dataset, the insights drawn from the data are expected to be generalizable and robust. Thus, the presented ML model is an important step toward the rational and predictive peptide design.
A Machine Learning Classification Model for Gold-Binding Peptides.
阅读:3
作者:Janairo, Jose, Isagani, B
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2022 | 起止号: | 2022 Apr 11; 7(16):14069-14073 |
| doi: | 10.1021/acsomega.2c00640 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
