The RNA polymerase NS5B of Hepatitis C virus (HCV) is a well-characterised drug target with an active site and four allosteric binding sites. This work presents a workflow for virtual screening and its application to Drug Bank screening targeting the Hepatitis C Virus (HCV) RNA polymerase non-nucleoside binding sites. Potential polypharmacological drugs are sought with predicted active inhibition on viral replication, and with proven positive pharmaco-clinical profiles. The approach adopted was receptor-based. Docking screens, guided with contact pharmacophores and neural-network activity prediction models on all allosteric binding sites and MD simulations, constituted our analysis workflow for identification of potential hits. Steps included: 1) using a two-phase docking screen with Surflex and Glide Xp. 2) Ranking based on scores, and important H interactions. 3) a machine-learning target-trained artificial neural network PIC prediction model used for ranking. This provided a better correlation of IC50 values of the training sets for each site with different docking scores and sub-scores. 4) interaction pharmacophores-through retrospective analysis of protein-inhibitor complex X-ray structures for the interaction pharmacophore (common interaction modes) of inhibitors for the five non-nucleoside binding sites were constructed. These were used for filtering the hits according to the critical binding feature of formerly reported inhibitors. This filtration process resulted in identification of potential new inhibitors as well as formerly reported ones for the thumb II and Palm I sites (HCV-81) NS5B binding sites. Eventually molecular dynamics simulations were carried out, confirming the binding hypothesis and resulting in 4 hits.
Multiple virtual screening approaches for finding new hepatitis C virus RNA-dependent RNA polymerase inhibitors: structure-based screens and molecular dynamics for the pursue of new poly pharmacological inhibitors.
阅读:9
作者:Elhefnawi Mahmoud, ElGamacy Mohammad, Fares Mohamed
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2012 | 起止号: | 2012;13 Suppl 17(Suppl 17):S5 |
| doi: | 10.1186/1471-2105-13-S17-S5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
