Single-cell RNA sequencing (scRNA-seq) has emerged as a popular method to profile gene expression at the resolution of individual cells. While there have been methods and software specifically developed to analyze scRNA-seq data, they are most accessible to users who program. We have created a scRNA-seq clustering analysis GenePattern Notebook that provides an interactive, easy-to-use interface for data analysis and exploration of scRNA-Seq data, without the need to write or view any code. The notebook provides a standard scRNA-seq analysis workflow for pre-processing data, identification of sub-populations of cells by clustering, and exploration of biomarkers to characterize heterogeneous cell populations and delineate cell types.
An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
阅读:3
作者:Mah Clarence K, Wenzel Alexander T, Juarez Edwin F, Tabor Thorin, Reich Michael M, Mesirov Jill P
| 期刊: | F1000Research | 影响因子: | 0.000 |
| 时间: | 2018 | 起止号: | 2018 Aug 16; 7:1306 |
| doi: | 10.12688/f1000research.15830.2 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
