Deep learning facilitates fully automated brain image registration of optoacoustic tomography and magnetic resonance imaging.

阅读:10
作者:Hu Yexing, Lafci Berkan, Luzgin Artur, Wang Hao, Klohs Jan, Dean-Ben Xose Luis, Ni Ruiqing, Razansky Daniel, Ren Wuwei
Multispectral optoacoustic tomography (MSOT) is an emerging optical imaging method providing multiplex molecular and functional information from the rodent brain. It can be greatly augmented by magnetic resonance imaging (MRI) which offers excellent soft-tissue contrast and high-resolution brain anatomy. Nevertheless, registration of MSOT-MRI images remains challenging, chiefly due to the entirely different image contrast rendered by these two modalities. Previously reported registration algorithms mostly relied on manual user-dependent brain segmentation, which compromised data interpretation and quantification. Here we propose a fully automated registration method for MSOT-MRI multimodal imaging empowered by deep learning. The automated workflow includes neural network-based image segmentation to generate suitable masks, which are subsequently registered using an additional neural network. The performance of the algorithm is showcased with datasets acquired by cross-sectional MSOT and high-field MRI preclinical scanners. The automated registration method is further validated with manual and half-automated registration, demonstrating its robustness and accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。