Novel analysis tool for the distance of gold dimers controlled by the DNA strand length on the DNA origami.

阅读:4
作者:Guckel Jannik, Liu Zhe, Wang Zunhao, Lalkens Birka, Etzkorn Markus, Park Daesung
Metallic nanoparticle dimers have been used to enhance the excitation rate of single-quantum emitters. The interparticle distance (d) of the dimers has a crucial influence on the signal enhancement. Therefore, precise control of d is desired for optimal performance. However, statistical analysis of d has been often restricted to a small number of dimers due to the lack of reliable automatic software tools. For this reason, we developed a novel analysis tool for automatic dimer analysis. Our approach combines particle detection by circle Hough transformation (CHT) with custom classification routines optimised for distinct types of particles. We applied our tool to scanning electron microscopy (SEM) images and achieved great agreement in dimer detection, reaching an agreement of around 97% between automatic analysis and manual inspection for more than 3000 metallic nanoparticle dimers on DNA origami controlled by a combination of multiple DNA strands. Our study revealed the effects of the strand length (L) on the distribution of d. Based on geometric consideration, we expected a strong correlation between L and the standard deviation (σ) of d. We could verify this correlation by characterising four dimer designs with different L while analysing more than 1000 dimers per specimen.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。