Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy.

阅读:4
作者:van Rooij Ward, Verbakel Wilko F, Slotman Berend J, Dahele Max
PURPOSE: Contouring organs at risk remains a largely manual task, which is time consuming and prone to variation. Deep learning-based delineation (DLD) shows promise both in terms of quality and speed, but it does not yet perform perfectly. Because of that, manual checking of DLD is still recommended. There are currently no commercial tools to focus attention on the areas of greatest uncertainty within a DLD contour. Therefore, we explore the use of spatial probability maps (SPMs) to help efficiency and reproducibility of DLD checking and correction, using the salivary glands as the paradigm. METHODS AND MATERIALS: A 3-dimensional fully convolutional network was trained with 315/264 parotid/submandibular glands. Subsequently, SPMs were created using Monte Carlo dropout (MCD). The method was boosted by placing a Gaussian distribution (GD) over the model's parameters during sampling (MCD + GD). MCD and MCD + GD were quantitatively compared and the SPMs were visually inspected. RESULTS: The addition of the GD appears to increase the method's ability to detect uncertainty. In general, this technique demonstrated uncertainty in areas that (1) have lower contrast, (2) are less consistently contoured by clinicians, and (3) deviate from the anatomic norm. CONCLUSIONS: We believe the integration of uncertainty information into contours made using DLD is an important step in highlighting where a contour may be less reliable. We have shown how SPMs are one way to achieve this and how they may be integrated into the online adaptive radiation therapy workflow.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。