Fractional flow reserve (FFR) provides the functional relevance of coronary atheroma. The FFR-guided strategy has been shown to reduce unnecessary stenting, improve overall health outcome, and to be cost-saving. The non-invasive, coronary computerised tomography (CT) angiography-derived FFR (cFFR) is an emerging method in reducing invasive catheter based measurements. This computational fluid dynamics-based method is laborious as it requires expertise in multidisciplinary analysis of combining image analysis and computational mechanics. In this work, we present a rapid method, powered by unsupervised learning, to automatically calculate cFFR from CT scans without manual intervention.
Automating fractional flow reserve (FFR) calculation from CT scans: A rapid workflow using unsupervised learning and computational fluid dynamics.
阅读:4
作者:Chakshu Neeraj Kavan, Carson Jason M, Sazonov Igor, Nithiarasu Perumal
| 期刊: | International Journal for Numerical Methods in Biomedical Engineering | 影响因子: | 2.400 |
| 时间: | 2022 | 起止号: | 2022 Mar;38(3):e3559 |
| doi: | 10.1002/cnm.3559 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
