Time-kill curves are used to study antibiotic combinations, but the colony count method to obtain the results is time-consuming. The aim of the study was to validate an ATP assay as an alternative to the conventional colony count method in studies of antibiotic combinations. The cutoff point for synergy and bactericidal effect to categorize the results using this alternative method were determined in Pseudomonas aeruginosa. The ATP assay was performed using the GloMax 96 microplate luminometer (Promega), which measures bioluminescence in relative light units (RLU). To standardize this assay, background, linearity, and the detection limit were determined with one strain each of multidrug-resistant P. aeruginosa and Klebsiella pneumoniae. Twenty-four-hour time-kill curves were performed in parallel by both methods with 12 strains of P. aeruginosa. The conventional method was used as a "gold" standard to establish the pharmacodynamic cutoff points in the ATP method. Normal saline solution was established as washing/dilution medium. RLU signal correlated with CFU when the assay was performed within the linear range. The categorization of the pharmacodynamic parameters using the ATP assay was equivalent to that of the colony count method. The bactericidal effect and synergy cutoff points were 1.348 (93% sensitivity, 81% specificity) and 1.065 (95% sensitivity, 89% specificity) log RLU/mL, respectively. The ATP assay was useful to determine the effectiveness of antibiotic combinations in time-kill curves. This method, less laborious and faster than the colony count method, could be implemented in the clinical laboratory workflow. IMPORTANCE Combining antibiotics is one of the few strategies available to overcome infections caused by multidrug-resistant bacteria. Time-kill curves are usually performed to evaluate antibiotic combinations, but obtaining results is too laborious to be routinely performed in a clinical laboratory. Our results support the utility of an ATP measurement assay using bioluminescence to determine the effectiveness of antibiotic combinations in time-kill curves. This method may be implemented in the clinical laboratory workflow as it is less laborious and faster than the conventional colony count method. Shortening the obtention of results to 24âh would also allow an earlier guided combined antibiotic treatment.
ATP Bioluminescence Assay To Evaluate Antibiotic Combinations against Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa.
阅读:4
作者:Puig-Collderram Berta, Domene-Ochoa Sandra, Salvà -Comas Maria, Montero Maria Milagro, Duran Xavier, González Juan R, Grau Santiago, Oliver Antonio, Horcajada Juan P, Padilla Eduardo, Segura Concepción, Prim Núria
| 期刊: | Microbiology Spectrum | 影响因子: | 3.800 |
| 时间: | 2022 | 起止号: | 2022 Aug 31; 10(4):e0065122 |
| doi: | 10.1128/spectrum.00651-22 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
