MOTIVATION: Mass spectrometry imaging (MSI) characterizes the spatial distribution of ions in complex biological samples such as tissues. Since many tissues have complex morphology, treatments and conditions often affect the spatial distribution of the ions in morphology-specific ways. Evaluating the selectivity and the specificity of ion localization and regulation across morphology types is biologically important. However, MSI lacks algorithms for segmenting images at both single-ion and spatial resolution. RESULTS: This article contributes spatial-Dirichlet Gaussian mixture model (DGMM), an algorithm and a workflow for the analyses of MSI experiments, that detects components of single-ion images with homogeneous spatial composition. The approach extends DGMMs to account for the spatial structure of MSI. Evaluations on simulated and experimental datasets with diverse MSI workflows demonstrated that spatial-DGMM accurately segments ion images, and can distinguish ions with homogeneous and heterogeneous spatial distribution. We also demonstrated that the extracted spatial information is useful for downstream analyses, such as detecting morphology-specific ions, finding groups of ions with similar spatial patterns, and detecting changes in chemical composition of tissues between conditions. AVAILABILITY AND IMPLEMENTATION: The data and code are available at https://github.com/Vitek-Lab/IonSpattern. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Unsupervised segmentation of mass spectrometric ion images characterizes morphology of tissues.
阅读:16
作者:Guo Dan, Bemis Kylie, Rawlins Catherine, Agar Jeffrey, Vitek Olga
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2019 | 起止号: | 2019 Jul 15; 35(14):i208-i217 |
| doi: | 10.1093/bioinformatics/btz345 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
