Sequential Bayesian experiment design for adaptive Ramsey sequence measurements.

阅读:4
作者:McMichael Robert D, Dushenko Sergey, Blakley Sean M
The Ramsey sequence is a canonical example of a quantum phase measurement for a spin qubit. In Ramsey measurements, the measurement efficiency can be optimized through careful selection of settings for the phase accumulation time setting, τ. This paper implements a sequential Bayesian experiment design protocol in low-fidelity Ramsey measurements, and its performance is compared to a previously reported adaptive heuristic protocol, a quantum phase estimation algorithm, and random setting choices. A workflow allowing measurements and design calculations to run concurrently largely eliminates computation time from measurement overhead. When precession frequency is the lone parameter to estimate, the Bayesian design is faster by factors of roughly 2 and 4 and 5 relative to the adaptive heuristic, random τ choices and the quantum phase estimation algorithm respectively. When four parameters are to be determined, Bayesian experiment design and random τ choices can converge to roughy equivalent sensitivity, but the Bayesian method converges 4 times faster.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。