Power spectrum curve compensation method for image quality enhancement in high-throughput gene sequencing.

阅读:8
作者:Wang Jianglan, Yao Siyuan, Duan Suocheng, Jiao Yu, Zhang Xin, Chen Xindong
In high-throughput gene sequencing, the quality of sequencing images is critical for the accuracy of subsequent base calling. However, during practical sequencing processes, the time delay integration (TDI) camera's push-scan imaging often leads to significant degradation of image quality along the push-scan direction. Addressing the current limitations in TDI image restoration research for gene sequencing, this study establishes an imaging spectrum model of sequencing images based on MGI's ultra-high-throughput sequencer. We systematically analyze the causes and intrinsic mechanisms of image quality degradation, with a focus on elucidating the specific impacts of TDI push-scanning on image quality. To enhance TDI sequencing image quality, we compare the differences in power spectral projection curves between stare-mode imaging and TDI push-scan imaging and propose a power spectrum curve compensation (PSCC)-based quality optimization method alongside a novel evaluation framework for sequencing image quality. Experimental results demonstrate that compared to original H-channel images from cycle 1 to 50, the energy concentration (1/σ) of the optimized images increases by 9.13% in the TDI direction and 4.64% in the direction perpendicular to TDI. Signal-to-noise ratio (SNR) increases by 6.90% for base A and 4.99% for base C, while base calling accuracy (Q30) improves by 1.67%.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。