High-Throughput Analysis of in-vitro LFP Electrophysiological Signals: A validated workflow/software package.

阅读:10
作者:Tsakanikas P, Sigalas C, Rigas P, Skaliora I
Synchronized brain activity in the form of alternating epochs of massive persistent network activity and periods of generalized neural silence, has been extensively studied as a fundamental form of circuit dynamics, important for many cognitive functions including short-term memory, memory consolidation, or attentional modulation. A key element in such studies is the accurate determination of the timing and duration of those network events. The local field potential (LFP) is a particularly attractive method for recording network activity, because it allows for long and stable recordings from multiple sites, allowing researchers to estimate the functional connectivity of local networks. Here, we present a computational method for the automatic detection and quantification of in-vitro LFP events, aiming to overcome the limitations of current approaches (e.g. slow analysis speed, arbitrary threshold-based detection and lack of reproducibility across and within experiments). The developed method is based on the implementation of established signal processing and machine learning approaches, is fully automated and depends solely on the data. In addition, it is fast, highly efficient and reproducible. The performance of the software is compared against semi-manual analysis and validated by verification of prior biological knowledge.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。