A computational approach to optimising laccase-mediated polyethylene oxidation through carbohydrate-binding module fusion.

阅读:4
作者:Gollan Michael, Black Gary, Munoz-Munoz Jose
Plastic pollution is a major global concern to the health and wellbeing of all terrestrial and marine life. However, no sustainable method for waste management is currently viable. This study addresses the optimisation of microbial enzymatic polyethylene oxidation through rational engineering of laccases with carbohydrate-binding module (CBM) domains. An explorative bioinformatic approach was taken for high-throughput screening of candidate laccases and CBM domains, representing an exemplar workflow for future engineering research. Molecular docking simulated polyethylene binding whilst a deep-learning algorithm predicted catalytic activity. Protein properties were examined to interpret the mechanisms behind laccase-polyethylene binding. The incorporation of flexible GGGGS(x3) hinges were found to improve putative polyethylene binding of laccases. Whilst CBM1 family domains were predicted to bind polyethylene, they were suggested to detriment laccase-polyethylene associations. In contrast, CBM2 domains reported improved polyethylene binding and may thus optimise laccase oxidation. Interactions between CBM domains, linkers, and polyethylene hydrocarbons were heavily reliant on hydrophobicity. Preliminary polyethylene oxidation is considered a necessity for consequent microbial uptake and assimilation. However, slow oxidation and depolymerisation rates inhibit the large-scale industrial implementation of bioremediation within waste management systems. The optimised polyethylene oxidation of CBM2-engineered laccases represents a significant advancement towards a sustainable method of complete plastic breakdown. Results of this study offer a rapid, accessible workflow for further research into exoenzyme optimisation whilst elucidating mechanisms behind the laccase-polyethylene interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。