Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, the accuracy might drop if class labels are inhomogeneously distributed among cohorts. Flimma ( https://exbio.wzw.tum.de/flimma/ ) addresses this issue by implementing the state-of-the-art workflow limma voom in a federated manner, i.e., patient data never leaves its source site. Flimma results are identical to those generated by limma voom on aggregated datasets even in imbalanced scenarios where meta-analysis approaches fail.
Flimma: a federated and privacy-aware tool for differential gene expression analysis.
阅读:12
作者:Zolotareva Olga, Nasirigerdeh Reza, Matschinske Julian, Torkzadehmahani Reihaneh, Bakhtiari Mohammad, Frisch Tobias, Späth Julian, Blumenthal David B, Abbasinejad Amir, Tieri Paolo, Kaissis Georgios, Rückert Daniel, Wenke Nina K, List Markus, Baumbach Jan
| 期刊: | Genome Biology | 影响因子: | 9.400 |
| 时间: | 2021 | 起止号: | 2021 Dec 14; 22(1):338 |
| doi: | 10.1186/s13059-021-02553-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
