BACKGROUND: Expression profiling, the measurement of all transcripts of a cell or tissue type, is currently the most comprehensive method to describe their physiological states. Given that accurate profiling methods currently available require RNA amounts found in thousands to millions of cells, many fields of biology working with specialized cell types cannot use these techniques because available cell numbers are limited. Currently available alternative methods for expression profiling from nanograms of RNA or from very small cell populations lack a broad validation of results to provide accurate information about the measured transcripts. METHODS AND FINDINGS: We provide evidence that currently available methods for expression profiling of very small cell populations are prone to technical noise and therefore cannot be used efficiently as discovery tools. Furthermore, we present Pico Profiling, a new expression profiling method from as few as ten cells, and we show that this approach is as informative as standard techniques from thousands to millions of cells. The central component of Pico Profiling is Whole Transcriptome Amplification (WTA), which generates expression profiles that are highly comparable to those produced by others, at different times, by standard protocols or by Real-time PCR. We provide a complete workflow from RNA isolation to analysis of expression profiles. CONCLUSIONS: Pico Profiling, as presented here, allows generating an accurate expression profile from cell populations as small as ten cells.
Accurate expression profiling of very small cell populations.
阅读:6
作者:Gonzalez-Roca Eva, Garcia-Albéniz Xabier, Rodriguez-Mulero Silvia, Gomis Roger R, Kornacker Karl, Auer Herbert
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2010 | 起止号: | 2010 Dec 28; 5(12):e14418 |
| doi: | 10.1371/journal.pone.0014418 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
