The Urban Deployment Model: A Toolset for the Simulation and Performance Characterization of Radiation Detector Deployments in Urban Environments.

阅读:6
作者:Abgrall Nicolas, Ayyad Yassid, Chow Chun Ho, Cooper Reynold, Hellfeld Daniel, Rofors Emil
Static and mobile radiation detectors can be deployed in urban environments for a range of nuclear security applications, including radiological source search-and-tracking scenarios. Modeling detector performance for such applications is challenging, as it does not depend solely on the detector capabilities themselves. Many factors must be taken into consideration, including specific source and background signatures, the topology and constraints of the deployment environment, the presence of nuisance sources, and whether detectors are mobile or static. When considering the simultaneous deployment of multiple, heterogeneous detectors, assessment of the system-wide performance requires the simulation of the individual detectors, and a system-level analysis of the detection performance. In radiological source search-and-tracking scenarios, performance is mostly dominated by the probability of encounter, which depends on the specifics of a given deployment, e.g., static vs. mobile detectors or a combination of both modalities, the number of detectors deployed, the dynamic vs. static setting of false alarm rates, and individual vs. networked operation. The Urban Deployment Model (UDM) toolset was specifically developed to cover the gap in the available generic frameworks for the simulation of radiation detector deployments at city scales. UDM provides a unified and modular framework to support the simulation and performance characterization of heterogeneous detector deployments in urban environments. This paper presents the key components along the UDM workflow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。