A Combined Approach to Infrared Small-Target Detection with the Alternating Direction Method of Multipliers and an Improved Top-Hat Transformation.

阅读:4
作者:Xi Tengyan, Yuan Lihua, Sun Quanbin
In infrared small target detection, the infrared patch image (IPI)-model-based methods produce better results than other popular approaches (such as max-mean, top-hat, and human visual system) but in some extreme cases it suffers from long processing times and inconsistent performance. In order to overcome these issues, we propose a novel approach of dividing the traditional target detection process into two steps: suppression of background noise and elimination of clutter. The workflow consists of four steps: after importing the images, the second step applies the alternating direction multiplier method to preliminarily remove the background. Comparatively to the IPI model, this step does not require sliding patches, resulting in a significant reduction in processing time. To eliminate residual noise and clutter, the interim results from morphological filtering are then processed in step 3 through an improved new top-hat transformation, using a threefold structuring element. The final step is thresholding segmentation, which uses an adaptive threshold algorithm. Compared with IPI and the new top-hat methods, as well as some other widely used methods, our approach was able to detect infrared targets more efficiently (90% less computational time) and consistently (no sudden performance drop).

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。