Droplet generation is a fundamental component of droplet microfluidics, compartmentalizing biological or chemical systems within a water-in-oil emulsion. As adoption of droplet microfluidics expands beyond expert labs or integrated devices, quality metrics are needed to contextualize the performance capabilities, improving the reproducibility and efficiency of operation. Here, we present two quality metrics for droplet generation: performance versatility, the operating range of a single device, and stability, the distance of a single operating point from a regime change. Both metrics were characterized in silico and validated experimentally using machine learning and rapid prototyping. These metrics were integrated into a design automation workflow, DAFD 2.0, which provides users with droplet generators of a desired performance that are versatile or flow stable. Versatile droplet generators with stable operating points accelerate the development of sophisticated devices by facilitating integration of other microfluidic components and improving the accuracy of design automation tools.
Versatility and stability optimization of flow-focusing droplet generators via quality metric-driven design automation.
阅读:4
作者:McIntyre David, Lashkaripour Ali, Arguijo Diana, Fordyce Polly, Densmore Douglas
| 期刊: | Lab on a Chip | 影响因子: | 5.400 |
| 时间: | 2023 | 起止号: | 2023 Nov 21; 23(23):4997-5008 |
| doi: | 10.1039/d3lc00189j | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
